Efficient Computation and Compensation of Distortion in Dispersion-Managed Optical Communications

The cost and time delay of current technologies’ computational requirements are now avoidable with this relatively low-cost method of solving nonlinear Schrödinger equations in parallel and in real-time.

Introduction
A new method for nonlinearity compensation on a dispersion-managed optical signal, transmitted over a long-haul optical communication link, improves upon current technologies by reducing the computational requirement and increasing computational efficiency by at least an order of magnitude. Implemented using digital signal processing, the current technologies for fiber nonlinearity compensation, including nonlinearity precompensation, digital backward propagation alone, and optical phase conjugation are impractical for high speed fiber links because of the large computational load. The new method enables a reduction in fiber nonlinearity, and consequently an increase in spectral efficiency and transmission distance in fiber communication systems, while reducing the computation needed. Reduced computational load also allows a reduction in ASIC chip size and power consumption by at least an order of magnitude. This technology is ideal for dispersion managed fiber optic transmission systems, particularly long distance (e.g. transoceanic) systems.

Technical Details
This method of nonlinearity compensation begins with a dispersion-managed optical signal transmitted over an optical communication link and virtually divides the communication link into multiple steps. Next, performing lumped dispersion compensation on a received optical signal obtains a waveform upon which digital backward propagation is applied by performing dispersion compensation and nonlinearity compensation for each of the multiple steps derived from the communication link, generating an estimate of the transmitted signal base.

UCF Inventors
Guifang Li, Ph.D.; Likai Zhu, Ph.D.

Benefits
• Reduced computational load with equivalent compensation, compared to currently available technologies

Applications
• Dispersion-managed optical communications, particularly transoceanic systems

Tech Fields
Communications

Keywords
long-haul, fiber optics, optical communications, transoceanic, dispersion-managed, digital backward propagation, DBP, nonlinearity compensation, NLC

US Issued Patent
8,805,209

If you or your company are interested in this opportunity, Contact:
John Miner | 407.882.1136 | John.Miner@ucf.edu | Tech ID# 32376
UCF Office of Technology Transfer | 12201 Research Parkway, Suite 501, Orlando, FL 32826